Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of molecular processes needed for vascular formation through transcriptome analysis of different vascular systems.

Identifieur interne : 002638 ( Main/Exploration ); précédent : 002637; suivant : 002639

Identification of molecular processes needed for vascular formation through transcriptome analysis of different vascular systems.

Auteurs : Peng Xu [République populaire de Chine] ; Yimeng Kong ; Xuan Li ; Laigeng Li

Source :

RBID : pubmed:23548001

Descripteurs français

English descriptors

Abstract

BACKGROUND

Vascular system formation has been studied through molecular and genetic approaches in Arabidopsis, a herbaceous dicot that is used as a model system. Different vascular systems have developed in other plants such as crops and trees. Uncovering shared mechanisms underlying vascular development by transcriptome analysis of different vascular systems may help to transfer knowledge acquired from Arabidopsis to other economically important species.

RESULTS

Conserved vascular genes and biological processes fundamental to vascular development were explored across various plants. Through comparative transcriptome analysis, 226 genes from Arabidopsis, 217 genes from poplar and 281 genes from rice were identified as constituting 107 conserved vascular gene groups. These gene groups are expressed mainly in vascular tissues and form a complex coexpression network with multiple functional connections. To date, only half of the groups have been experimentally investigated. The conserved vascular gene groups were classified into 9 essential processes for vascular development. 18 groups (17%) lack of annotations were classified as having unknown functions.

CONCLUSION

The study provides a map of fundamental biological processes conserved across different vascular systems. It identifies gaps in the experimental investigation of pathways active in vascular formation, which if explored, could lead to a more complete understanding of vascular development.


DOI: 10.1186/1471-2164-14-217
PubMed: 23548001
PubMed Central: PMC3620544


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of molecular processes needed for vascular formation through transcriptome analysis of different vascular systems.</title>
<author>
<name sortKey="Xu, Peng" sort="Xu, Peng" uniqKey="Xu P" first="Peng" last="Xu">Peng Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics and Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics and Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032</wicri:regionArea>
<wicri:noRegion>Shanghai 200032</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kong, Yimeng" sort="Kong, Yimeng" uniqKey="Kong Y" first="Yimeng" last="Kong">Yimeng Kong</name>
</author>
<author>
<name sortKey="Li, Xuan" sort="Li, Xuan" uniqKey="Li X" first="Xuan" last="Li">Xuan Li</name>
</author>
<author>
<name sortKey="Li, Laigeng" sort="Li, Laigeng" uniqKey="Li L" first="Laigeng" last="Li">Laigeng Li</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23548001</idno>
<idno type="pmid">23548001</idno>
<idno type="doi">10.1186/1471-2164-14-217</idno>
<idno type="pmc">PMC3620544</idno>
<idno type="wicri:Area/Main/Corpus">002646</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002646</idno>
<idno type="wicri:Area/Main/Curation">002646</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002646</idno>
<idno type="wicri:Area/Main/Exploration">002646</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of molecular processes needed for vascular formation through transcriptome analysis of different vascular systems.</title>
<author>
<name sortKey="Xu, Peng" sort="Xu, Peng" uniqKey="Xu P" first="Peng" last="Xu">Peng Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics and Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics and Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032</wicri:regionArea>
<wicri:noRegion>Shanghai 200032</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kong, Yimeng" sort="Kong, Yimeng" uniqKey="Kong Y" first="Yimeng" last="Kong">Yimeng Kong</name>
</author>
<author>
<name sortKey="Li, Xuan" sort="Li, Xuan" uniqKey="Li X" first="Xuan" last="Li">Xuan Li</name>
</author>
<author>
<name sortKey="Li, Laigeng" sort="Li, Laigeng" uniqKey="Li L" first="Laigeng" last="Li">Laigeng Li</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Cluster Analysis (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Oryza (genetics)</term>
<term>Phloem (genetics)</term>
<term>Phloem (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Xylem (genetics)</term>
<term>Xylem (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse de regroupements (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Oryza (génétique)</term>
<term>Phloème (génétique)</term>
<term>Phloème (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
<term>Xylème (génétique)</term>
<term>Xylème (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Phloem</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Phloème</term>
<term>Protéines végétales</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Phloem</term>
<term>Plant Proteins</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Phloème</term>
<term>Protéines végétales</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cluster Analysis</term>
<term>Gene Expression Profiling</term>
<term>Genes, Plant</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de regroupements</term>
<term>Gènes de plante</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Vascular system formation has been studied through molecular and genetic approaches in Arabidopsis, a herbaceous dicot that is used as a model system. Different vascular systems have developed in other plants such as crops and trees. Uncovering shared mechanisms underlying vascular development by transcriptome analysis of different vascular systems may help to transfer knowledge acquired from Arabidopsis to other economically important species.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Conserved vascular genes and biological processes fundamental to vascular development were explored across various plants. Through comparative transcriptome analysis, 226 genes from Arabidopsis, 217 genes from poplar and 281 genes from rice were identified as constituting 107 conserved vascular gene groups. These gene groups are expressed mainly in vascular tissues and form a complex coexpression network with multiple functional connections. To date, only half of the groups have been experimentally investigated. The conserved vascular gene groups were classified into 9 essential processes for vascular development. 18 groups (17%) lack of annotations were classified as having unknown functions.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>The study provides a map of fundamental biological processes conserved across different vascular systems. It identifies gaps in the experimental investigation of pathways active in vascular formation, which if explored, could lead to a more complete understanding of vascular development.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23548001</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>10</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<PubDate>
<Year>2013</Year>
<Month>Apr</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of molecular processes needed for vascular formation through transcriptome analysis of different vascular systems.</ArticleTitle>
<Pagination>
<MedlinePgn>217</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-14-217</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Vascular system formation has been studied through molecular and genetic approaches in Arabidopsis, a herbaceous dicot that is used as a model system. Different vascular systems have developed in other plants such as crops and trees. Uncovering shared mechanisms underlying vascular development by transcriptome analysis of different vascular systems may help to transfer knowledge acquired from Arabidopsis to other economically important species.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Conserved vascular genes and biological processes fundamental to vascular development were explored across various plants. Through comparative transcriptome analysis, 226 genes from Arabidopsis, 217 genes from poplar and 281 genes from rice were identified as constituting 107 conserved vascular gene groups. These gene groups are expressed mainly in vascular tissues and form a complex coexpression network with multiple functional connections. To date, only half of the groups have been experimentally investigated. The conserved vascular gene groups were classified into 9 essential processes for vascular development. 18 groups (17%) lack of annotations were classified as having unknown functions.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The study provides a map of fundamental biological processes conserved across different vascular systems. It identifies gaps in the experimental investigation of pathways active in vascular formation, which if explored, could lead to a more complete understanding of vascular development.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Peng</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>National Key Laboratory of Plant Molecular Genetics and Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kong</LastName>
<ForeName>Yimeng</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Xuan</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Laigeng</ForeName>
<Initials>L</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>04</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052585" MajorTopicYN="N">Phloem</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>11</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>03</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23548001</ArticleId>
<ArticleId IdType="pii">1471-2164-14-217</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-14-217</ArticleId>
<ArticleId IdType="pmc">PMC3620544</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Biol. 2003 Oct 14;13(20):1768-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14561401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2005;5:72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16368012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Mar 2;17(5):1405-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9482737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Jun 19;17(12):1061-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17570668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Sep;56(419):2465-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16061508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jun;126(2):643-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(2):e17458</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21386988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Sep 1;17(17):2088-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12923061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Mar;155(3):1214-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Feb 1;27(3):431-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21149340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Feb 15;119(Pt 4):753-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16449317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2009 Oct;11(10):1166-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19794500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2000 Jun;41(6):649-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10945333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Feb;57(4):718-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18980649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Mar;23(3):895-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21441431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6478-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17420480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2011 Jul 01;2:23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22639584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jan;17(1):61-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15598805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14253-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22893684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Feb 6;284(6):3833-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19056734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Sep 14;337(6100):1333-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22984069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Nov;15(11):625-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20833576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008;9:465</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18976492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2281-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2010 Mar;137(5):767-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20147378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Mar;23(3):1124-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21447792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2010;26:605-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20590454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):326-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8278386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):803-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15923329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jul;43(1):79-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15960618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8633-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15932943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):3158-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17114348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Nov;50(11):1982-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19789274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 Jul;6(4):1331-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23288865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Apr;194(1):54-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22474687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Aug 15;19(16):1855-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16103214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15208-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18812507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 May;66(3):401-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21251108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Apr;13(4):829-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11283339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Dec;48(12):1659-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17991630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Dec;60(6):1000-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19737362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 May 18;282(20):14932-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17314094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:183-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(11):e15481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21124849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;573:259-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19763933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Mar;17(3):691-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15705957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2008;24:551-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18837672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Oct;20(10):2763-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Oct;139(2):806-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16183842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 13;426(6963):181-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14614507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Sep;19(9):2776-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17890373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2011 Oct;52(10):1856-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21908441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jan;19(1):237-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17237350</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Kong, Yimeng" sort="Kong, Yimeng" uniqKey="Kong Y" first="Yimeng" last="Kong">Yimeng Kong</name>
<name sortKey="Li, Laigeng" sort="Li, Laigeng" uniqKey="Li L" first="Laigeng" last="Li">Laigeng Li</name>
<name sortKey="Li, Xuan" sort="Li, Xuan" uniqKey="Li X" first="Xuan" last="Li">Xuan Li</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Xu, Peng" sort="Xu, Peng" uniqKey="Xu P" first="Peng" last="Xu">Peng Xu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002638 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002638 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23548001
   |texte=   Identification of molecular processes needed for vascular formation through transcriptome analysis of different vascular systems.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23548001" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020